MEMS are separate and distinct from the hypothetical vision of molecular nanotechnology or molecular electronics. MEMS are made up of components between 1 to 100 micrometres in size (i.e. 0.001 to 0.1 mm), and MEMS devices generally range in size from 20 micrometres (20 millionths of a metre) to a millimetre (i.e. 0.02 to 1.0 mm). They usually consist of a central unit that processes data (the microprocessor) and several components that interact with the surroundings such as microsensors.[1] At these size scales, the standard constructs of classical physicsare not always useful. Because of the large surface area to volume ratio of MEMS, surface effects such as electrostatics and wetting dominate over volume effects such as inertia or thermal mass.
The potential of very small machines was appreciated before the technology existed that could make them—see, for example, Richard Feynman‘s famous 1959 lecture There’s Plenty of Room at the Bottom. MEMS became practical once they could be fabricated using modifiedsemiconductor device fabrication technologies, normally used to make electronics. These include molding and plating, wet etching (KOH, TMAH) and dry etching (RIE and DRIE), electro discharge machining (EDM), and other technologies capable of manufacturing small devices. An early example of a MEMS device is the resonistor – an electromechanical monolithic resonator.[2][3]
Source: http://en.wikipedia.org/wiki/Microelectromechanical_systems
The Techmor IM-1 Inertial Measurment Unit uses the latest MEMS technology to precisely track roll pitch and yaw, as well as accelerations in all directions.
See the IM-1 Product page for more info: Techmor IM-1

Contact Us
Copyright 2022 Techmor Inc.